

RoHS Directive compatibility information http://www.mew.co.jp/ac/e/environment/

FEATURES

1. Flat compact size 14.0(L) × 9.0(W) × 5.0(H) .551(L) × .354(W) × .197(H)

LOW PROFILE 2 FORM C & 4 FORM C RELAY

2. Nominal operating power: High sensitivity of 140mW (2 Form C single side stable type)

By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 140 mW (minimum operating power of 79 mW) has been achieved (4 Form C single side stable type is 280 mW). **3. Suitable for SMD automatic**

insertion (SA type)

With a height of 5.6 mm .220 inch, the relays meet JIS C 0806 specifications.

4. High density mounting possible High-efficiency magnetic circuits ensure low magnetic flux leakage. Because characteristics are little changed by proximity mounting, high-density mounting is possible.

5. The use of gold-clad twin crossbar contacts ensures high contact reliability.

6. DIL terminal array enables use of IC sockets

7. Low thermal electromotive force As well as low power consumption of 140 mW, use of a structure with separate coil

and contact sections has reduced thermal electromotive force to the low level of approximately 5 µV.

TQ RELAYS

Surface mount types achieve approximately 2 µV.

8. Latching types also available 9. Self-clinching terminal also available

10. A range of surface-mount types is also available.

SA: Low-profile surface-mount terminal type

SL: High connection reliability surface-

mount terminal type

SS: Space saving surface- mount terminal type

11. M.B.B. contact types available

TYPICAL APPLICATIONS

- 1. Communications
- 2. Measurement equipment
- 3. OA equipment
- 4. Industrial machines

ORDERING INFORMATION TQ 2 Contact arrangement 2: 2 Form C 4: 4 Form C Terminal shape Nil: Standard PC board terminal H: Self-clinching terminal SA: SA type SL: SL type SS: SS type Operating function Nil: Single side stable L: 1 coil latching L2: 2 coil latching MBB function Nil: Standard (B.B.M.) type 2M: 2M.B.B. type Coil voltage (DC)* 1.5 (SMD only), 3, 4.5, 5, 6, 9, 12, 24, 48V Packing style Nil: Tube packing X: Tape and reel (picked from 1/2/3/4/5-pin side) Tape and reel packing (picked from the 6/7/8/9/10-pin side) Z: Notes: 1. *48 V coil type: Single side stable only

In case of 5 V transistor drive circuit, it is recommended to use 4.5 V type relay.

I. Standard PC board terminal and self-clinching terminal

TYPES

1. Standard (B.B.M.) type

1) Standard PC board terminal

Contact	Nominal coil	Single side stable	1 coil latching	2 coil latching
arrangement	voltage	Part No.	Part No.	Part No.
	3V DC	TQ2-3V	TQ2-L-3V	TQ2-L2-3V
	4.5V DC	TQ2-4.5V	TQ2-L-4.5V	TQ2-L2-4.5V
	5V DC	TQ2-5V	TQ2-L-5V	TQ2-L2-5V
0 Farm C	6V DC	TQ2-6V	TQ2-L-6V	TQ2-L2-6V
2 Form C	9V DC	TQ2-9V	TQ2-L-9V	TQ2-L2-9V
	12V DC	TQ2-12V	TQ2-L-12V	TQ2-L2-12V
	24V DC	TQ2-24V	TQ2-L-24V	TQ2-L2-24V
	48V DC	TQ2-48V	_	_
	3V DC	TQ4-3V	TQ4-L-3V	TQ4-L2-3V
	4.5V DC	TQ4-4.5V	TQ4-L-4.5V	TQ4-L2-4.5V
	5V DC	TQ4-5V	TQ4-L-5V	TQ4-L2-5V
4 5 0	6V DC	TQ4-6V	TQ4-L-6V	TQ4-L2-6V
4 Form C	9V DC	TQ4-9V	TQ4-L-9V	TQ4-L2-9V
	12V DC	TQ4-12V	TQ4-L-12V	TQ4-L2-12V
	24V DC	TQ4-24V	TQ4-L-24V	TQ4-L2-24V
	48V DC	TQ4-48V	_	_

Standard packing (2 Form C): Tube: 50 pcs.; Case: 1,000 pcs. Standard packing (4 Form C): Tube: 25 pcs.; Case: 500 pcs.

Contact Nominal coil	Nominal coil	Single side stable	1 coil latching	2 coil latching
arrangement	voltage	Part No.	Part No.	Part No.
	3V DC	TQ2H-3V	TQ2H-L-3V	TQ2H-L2-1.5V
	4.5V DC	TQ2H-4.5V	TQ2H-L-4.5V	TQ2H-L2-3V
	5V DC	TQ2H-5V	TQ2H-L-5V	TQ2H-L2-4.5V
2 Form C	6V DC	TQ2H-6V	TQ2H-L-6V	TQ2H-L2-6V
2 Form C	9V DC	TQ2H-9V	TQ2H-L-9V	TQ2H-L2-9V
	12V DC	TQ2H-12V	TQ2H-L-12V	TQ2H-L2-12V
	24V DC	TQ2H-24V	TQ2H-L-24V	TQ2H-L2-24V
	48V DC	TQ2H-48V	—	—
	3V DC	TQ4H-3V	TQ4H-L-3V	TQ4H-L2-3V
	4.5V DC	TQ4H-4.5V	TQ4H-L-4.5V	TQ4H-L2-4.5V
	5V DC	TQ4H-5V	TQ4H-L-5V	TQ4H-L2-5V
4 Form C	6V DC	TQ4H-6V	TQ4H-L-6V	TQ4H-L2-6V
4 Form C	9V DC	TQ4H-9V	TQ4H-L-9V	TQ4H-L2-9V
	12V DC	TQ4H-12V	TQ4H-L-12V	TQ4H-L2-12V
	24V DC	TQ4H-24V	TQ4H-L-24V	TQ4H-L2-24V
	48V DC	TQ4H-48V	_	_

Note: Types ("-3" to the end of part No.) designed to withstand strong vibration caused, for example, by the use of terminal cutters, can also be ordered. However, please contact us if you need parts for use in low level load.

2. M.B.B. type

1) Standard PC board terminal

Contact arrangement	Neminal apil voltage	Single side stable
Contact arrangement	Nominal coil voltage	Part No.
	3V DC	TQ2-2M-3V
	4.5V DC	TQ2-2M-4.5V
	5V DC	TQ2-2M-5V
2 Form C	6V DC	TQ2-2M-6V
	9V DC	TQ2-2M-9V
	12V DC	TQ2-2M-12V
	24V DC	TQ2-2M-24V

Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.

2) Self-clinching terminal

Our that amount of the		Single side stable
Contact arrangement	Nominal coil voltage	Part No.
	3V DC	TQ2H-2M-3V
	4.5V DC	TQ2H-2M-4.5V
	5V DC	TQ2H-2M-5V
2 Form C	6V DC	TQ2H-2M-6V
	9V DC	TQ2H-2M-9V
	12V DC	TQ2H-2M-12V
	24V DC	TQ2H-2M-24V

Standard packing: Tube: 50 pcs.; Case: 1,000 pcs. Notes: 1. Latching types are available by request. Please consult us for details. 2. UL/CSA approved (UL file No.:E 43149, CSA file No.: LR26550) 3. Types ("-1" to the end of part No.) designed to withstand strong vibration caused, for example, by the use of terminal cutters, can also be ordered. However, please contact us if you need parts for use in low level load and low thermal power.

RATING 1. Coil data

[Standard (B.B.M.) type]

1) Single side stable (2 Form C)

Nominal coil voltage	Pick-up voltage (at 20°C 68°F)	Drop-out voltage (at 20°C 68°F)	Nominal operating current [±10%] (at 20°C 68°F)	Coil resistance [±10%] (at 20°C 68°F)	Nominal operating power	Max. allowable voltage (at 20°C 68°F)
3V DC			46.7mA	64.3Ω		
4.5V DC			31.1mA	144.6Ω		
5V DC			28.1mA	178Ω	140mW	1000111
6V DC	75%V or less of	10%V or more of	23.3mA	257Ω	140/1100	150%V of nominal voltage
9V DC	nominal voltage*	nominal voltage*	15.5mA	579Ω		nominal voltage
12V DC	(Initial)	(Initial)	11.7mA	1,028Ω		
24V DC			8.3mA	2,880Ω	200mW	
48V DC			6.25mA	7,680Ω	300mW	120%V of nominal voltage

2) 1 coil latching (2 Form C)

	0 ()					
Nominal coil voltage	Set voltage (at 20°C 68°F)	Reset voltage (at 20°C 68°F)	Nominal operating current [±10%] (at 20°C 68°F)	Coil resistance [±10%] (at 20°C 68°F)	Nominal operating power	Max. allowable voltage (at 20°C 68°F)
3V DC			33.3mA	90Ω		
4.5V DC			22.2mA	202.5Ω		
5V DC	75%V or less of	75%V or less of	20mA	250Ω	100mW	100001
6V DC	nominal voltage*	nominal voltage*	16.7mA	360Ω	TOOMVV	150%V of nominal voltage
9V DC	(Initial)	(Initial)	11.1mA	810Ω		nominal voltage
12V DC			8.3mA	1,440Ω		
24V DC			6.3mA	3,840Ω	150mW	

3) 2 coil latching (2 Form C)

Nominal coil voltage	Set voltage (at 20°C 68°F)	Reset voltage (at 20°C 68°F)	cur	operating rent 20°C 68°F)		sistance 20°C 68°F)		operating wer	Max. allowable voltage (at 20°C 68°F)
-			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC			66.7mA	66.7mA	45Ω	45Ω			
4.5V DC			44.4mA	44.4mA	101.2Ω	101.2Ω			
5V DC		750()/ 1 /	40mA	40mA	125Ω	125Ω	200mW	200mW	150%V of
6V DC	75%V or less of nominal voltage*	75%V or less of nominal voltage*	33.3mA	33.3mA	180Ω	180Ω	20011100	20011100	nominal voltage
9V DC	(Initial)	(Initial)	22.2mA	22.2mA	405Ω	405Ω			
12V DC			16.7mA	16.7mA	720Ω	720Ω			
24V DC			12.5mA	12.5mA	1,920Ω	1,920Ω	300mW	300mW	120%V of nominal voltage

4) Single side stable (4 Form C)

Nominal coil voltage	Pick-up voltage (at 20°C 68°F)	Drop-out voltage (at 20°C 68°F)	Nominal operating current [±10%] (at 20°C 68°F)	Coil resistance [±10%] (at 20°C 68°F)	Nominal operating power	Max. allowable voltage (at 20°C 68°F)
3V DC			93.8mA	32Ω		
4.5V DC			62.2mA	72.3Ω		
5V DC			56.2mA	89Ω		1500/14
6V DC	75%V or less of	10%V or more of	46.5mA	129Ω	280mW	150%V of nominal voltage
9V DC	nominal voltage*	nominal voltage*	31.1mA	289Ω		norminal voltage
12V DC	(Initial)	(Initial)	23.3mA	514Ω		
24V DC			11.7mA	2,056Ω		
48V DC			8.3mA	5,760Ω	400mW	120%V of nominal voltage

TQ

5) 1 coil latching (4 Form C)

-,						
Nominal coil voltage	Set voltage (at 20°C 68°F)	Reset voltage (at 20°C 68°F)	Nominal operating current [±10%] (at 20°C 68°F)	Coil resistance [±10%] (at 20°C 68°F)	Nominal operating power	Max. allowable voltage (at 20°C 68°F)
3V DC			66.6mA	45Ω		
4.5V DC			44.4mA	101.2Ω		
5V DC	75%V or less of	75%V or less of	40mA	125Ω		1500/14
6V DC	nominal voltage*	nominal voltage*	33.3mA	180Ω	200mW	150%V of nominal voltage
9V DC	(Initial)	(Initial)	22.2mA	405Ω		nominal voltage
12V DC			16.7mA	720Ω		
24V DC			8.3mA	2,880Ω		

6) 2 coil latching (4 Form C)

Nominal coil voltage	Set voltage (at 20°C 68°F)	Reset voltage (at 20°C 68°F)	cur	operating rent 20°C 68°F)		sistance 20°C 68°F)		operating wer	Max. allowable voltage (at 20°C 68°F)
0	, , , , , , , , , , , , , , , , , , ,		Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC			133mA	133mA	22.5Ω	22.5Ω			
4.5V DC			88.9mA	88.9mA	50.6Ω	50.6Ω			
5V DC	75%V or less of	75%V or less of	80mA	80mA	62.5Ω	62.5Ω			1500/14
6V DC	nominal voltage*	nominal voltage*	66.6mA	66.6mA	90Ω	90Ω	400mW 400mW	400mW	150%V of nominal voltage
9V DC	(Initial)	(Initial)	44.4mA	44.4mA	202.5Ω	202.5Ω			
12V DC			33.3mA	33.3mA	360Ω	360Ω			
24V DC			16.7mA	16.7mA	1,440Ω	1,440Ω			

*Pulse drive (JIS C 5442-1986)

[M.B.B. type	9]					
Nominal coil voltage	Pick-up voltage (at 20°C 68°F)	Drop-out voltage (at 20°C 68°F)	Nominal operating current [±10%] (at 20°C 68°F)	Coil resistance [±10%] (at 20°C 68°F)	Nominal operating power	Max. allowable voltage (at 20°C 68°F)
3V DC			66.7mA	45Ω		
4.5V DC			44.4mA	101Ω		
5V DC	80%V or less of	10%V or more of	40mA	125Ω		4500(1)/ (
6V DC	nominal voltage*	nominal voltage*	33.3mA	180Ω	200mW	150%V of nominal voltage
9V DC	(Initial)	(Initial)	22.2mA	405Ω		noniniai voitago
12V DC			16.7mA	720Ω		
24V DC			8.3mA	2,880Ω		

*Pulse drive (JIS C 5442-1986)

Characteristics Specifications Item 2 Form C, 2 Form D (M.B.B.) 4 Form C Arrangement Max. 50mΩ (By voltage drop 6 V DC 1A) Contact Initial contact resistance, max. Contact material Ag+Au clad 1 A 30 V DC, 0.5 A 125 V AC*1 Nominal switching capacity (resistive load) Max. switching power (resistive load) 30 W (DC), 62.5 V A (AC)*1 110 V DC, 125 V AC*1 Max. switching voltage Max. switching current 1 A Min. switching capacity (Reference value)*2 10µA 10mV DC Rating Standard (B.B.M) type: 140 mW (3 to 12 V DC), 200 mW (24 V DC), 300 mW (48 V DC) 280 mW (3 to 24 V DC), 400 mW (48 V DC) Single side stable Nominal M.B.B. type: 200 mW operating power 100 mW (3 to 12 V DC), 150 mW (24 V DC) 200 mW 1 coil latching 2 coil latching 200 mW (3 to 12 V DC), 300 mW (24 V DC) 400 mW Min. 1,000MΩ (at 500V DC) Insulation resistance (Initial) Measurement at same location as "Initial breakdown voltage" section. Standard (B.B.M) type: 750 Vrms for 1min. (Detection current: 10 mA), Between open contacts M.B.B. type: 300 Vrms for 1 min. (Detection current: 10 mA) Breakdown voltage (Initial) 1,000 Vrms for 1min. (Detection current: 10 mA) Between contact and coil Electrical characteristics Between contact sets 1,000 Vrms for 1min. (Detection current: 10 mA) Temperature rise (at 20°C 68°F) Max. 50°C (By resistive method, nominal voltage applied to the coil; contact carrying current: 1A.) Operate time [Set time] (at 20°C 68°F) Max. 3 ms [Max. 3 ms] (Nominal voltage applied to the coil, excluding contact bounce time.) Max. 3 ms [Max. 3 ms] (Nominal voltage applied to the coil, excluding contact bounce time.) Release time [Reset time] (at 20°C 68°F) (without diode) Functional Min. 490 m/s² (Half-wave pulse of sine wave: 11 ms; detection time: 10µs.) Shock resistance Mechanical Destructive Min. 980 m/s2 (Half-wave pulse of sine wave: 6 ms.) characteristics 10 to 55 Hz at double amplitude of 3 mm (Detection time: 10us.) Functional Vibration resistance Destructive 10 to 55 Hz at double amplitude of 5 mm Mechanical (at 180 cpm) Standard (B.B.M) type: Min. 108, M.B.B. type: Min. 107 Expected life Standard (B.B.M) type: Min. 2×10⁵ (1 A 30 V DC resistive), Min. 10⁵ (0.5 A 125 V AC resistive) M.B.B. type: Min. 10⁵ (1 A 30 V DC resistive) Electrical (at 20 cpm) Standard (B.B.M) type: Ambient temperature: -40°C to +70°C -40°F to +158°F; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature) Conditions for operation, transport and M.B.B. type: Ambient temperature: -40°C to +50°C -40°F to +122°F; Conditions storage*3 Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature) Max. operating speed (at rated load) 20 cpm Unit weight Approx. 1.5 g .053 oz Approx. 3 g .106 oz.

Notes: *1 AC is standard (B.B.M) type only.

*2 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (SX relays are available for low level load switching [10V DC, 10mA max. level])

*3 Refer to 6. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT.

REFERENCE DATA

1. Maximum switching capacity

2. Specifications

2. Life curve

3. Mechanical life Tested sample: TQ2-12V, 10 pcs.

4.-(1) Electrical life (DC load)

Tested sample: TQ2-12V, 6 pcs. Condition: 1 A 30 V DC resistive load, 20 cpm Change of pick-up and drop-out voltage

ΛΔ

150

5. Coil temperature rise (2C) Tested sample: TQ2-12V Measured portion: Inside the coil Ambient temperature: 30°C 86°F

7.-(2) High-frequency characteristics (Insertion loss)

9.-(2) Influence of adjacent mounting

4.-(2) Electrical life (AC load) Tested sample: TQ2-12V, 6 pcs. Condition: 0.5 A 125 V AC resistive load, 20 cpm Change of pick-up and drop-out voltage

6. Ambient temperature characteristics Tested sample: TQ2-12V, 5 pcs.

8. Malfunctional shock (single side stable) Tested sample: TQ2-12V, 6 pcs.

10. Contact reliability (1 mA 5 V DC resistive load) Tested sample: TQ2-12V Condition: Detection level 10 W

All Rights Reserved © COPYRIGHT Matsushita Electric Works, Ltd.

Change of contact resistance

7.-(1) High-frequency characteristics (Isolation)

9.-(1) Influence of adjacent mounting

11. Actual load test (35 mA 48 V DC wire spring relay load)

Circuit

Change of pick-up and drop-out voltage

Change of contact resistance

12. 0.1 A 53 V DC resistive load test Change of pick-up and drop-out voltage

13. Distribution of M.B.B. time Tested sample: TQ2-2M-5V, 85 pcs.

Change of contact resistance

II. Surface-mount terminal

TYPES

1) Tube packing

Contact	Nominal coil	Single side stable	1 coil latching	2 coil latching
arrangement	voltage	Part No.	Part No.	Part No.
	1.5V DC	TQ2S□-1.5V	TQ2S□-L-1.5V	TQ2S□-L2-1.5V
	3V DC	TQ2S□-3V	TQ2S□-L-3V	TQ2S□-L2-3V
	4.5V DC	TQ2SD-4.5V	TQ2SD-L-4.5V	TQ2SL2-4.5V
	5V DC	TQ2SD-5V	TQ2S□-L-5V	TQ2S□-L2-5V
2c	6V DC	TQ2S□-6V	TQ2S□-L-6V	TQ2S□-L2-6V
	9V DC	TQ2S□-9V	TQ2S□-L-9V	TQ2S□-L2-9V
	12V DC	TQ2SD-12V	TQ2S□-L-12V	TQ2S□-L2-12V
	24V DC	TQ2S□-24V	TQ2S□-L-24V	TQ2S□-L2-24V
	48V DC	TQ2S□-48V	_	_

: For each surface-mounted terminal identification, input the following letter. SA type: <u>A</u>, SL type: <u>L</u>, SS type: <u>S</u> Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.

2) Tape and reel packing

Contact	Nominal coil	Single side stable	1 coil latching	2 coil latching		
arrangement	voltage	Part No.	Part No.	Part No.		
	1.5V DC	TQ2S[]-1.5V-Z	TQ2S□-L-1.5V-Z	TQ2S□-L2-1.5V-Z		
	3V DC	TQ2SD-3V-Z	TQ2S□-L-3V-Z	TQ2SD-L2-3V-Z		
2 Form C	4.5V DC	TQ2S4.5V-Z	TQ2S□-L-4.5V-Z	TQ2SD-L2-4.5V-Z		
	5V DC	TQ2SD-5V-Z	TQ2S□-L-5V-Z	TQ2SD-L2-5V-Z		
	6V DC	TQ2S□-6V-Z	TQ2S□-L-6V-Z	TQ2S□-L2-6V-Z		
	9V DC	TQ2SD-9V-Z	TQ2S□-L-9V-Z	TQ2S□-L2-9V-Z		
	12V DC	TQ2SD-12V-Z	TQ2S□-L-12V-Z	TQ2SD-L2-12V-Z		
	24V DC	TQ2S□-24V-Z	TQ2S□-L-24V-Z	TQ2SD-L2-24V-Z		
	48V DC	TQ2SD-48V-Z	_	_		

: For each surface-mounted terminal identification, input the following letter. SA type: <u>A</u>, SL type: <u>L</u>, SS type: <u>S</u> Standard packing: Tape and reel: 500 pcs.; Case: 1,000 pcs. Note: Tape and reel packing symbol "-Z" is not marked on the relay. "X" type tape and reel packing (picked from 1/2/3/4-pin side) is also available.

RATING

1. Coil data

1) Single side stable

Nominal coil voltage	Pick-up voltage (at 20°C 68°F)	Drop-out voltage (at 20°C 68°F)	Nominal operating current (at 20°C 68°F)	Coil resistance [±10%] (at 20°C 68°F)	Nominal operating power	Max. allowable voltage (at 20°C 68°F)
1.5V DC		10%V or more of nominal voltage* (Initial)	93.8mA	16 Ω		150%V of nominal voltage
3V DC			46.7mA	64.3Ω		
4.5V DC			31mA	145Ω		
5V DC	75%V or less of nominal voltage*		28.1mA	178Ω	140mW	
6V DC			23.3mA	257Ω		
9V DC	(Initial)		15.5mA	579Ω		
12V DC			11.7mA	1,028Ω		
24V DC			8.3mA	2,880Ω	200mW	
48V DC			6.3mA	7,680Ω	300mW	120%V of nominal voltage

2) 1 coil latching

Nominal coil voltage	Set voltage (at 20°C 68°F)	Reset voltage (at 20°C 68°F)	Nominal operating current (at 20°C 68°F)	Coil resistance [±10%] (at 20°C 68°F)	Nominal operating power	Max. allowable voltage (at 20°C 68°F)
1.5V DC		75%V or less of nominal voltage* (Initial)	46.9mA	32Ω		150%V of nominal voltage
3V DC			23.3mA	128.6Ω		
4.5V DC	75%V or less of		15.6mA	289.3Ω	70mW	
5V DC			14mA	357Ω		
6V DC	nominal voltage* (Initial)		11.7mA	514Ω		
9V DC	()		7.8mA	1,157Ω		
12V DC			5.8mA	2,057Ω		
24V DC			4.2mA	5,760Ω	100mW	

3) 2 coil latching

Nominal coil voltage	Set voltage (at 20°C 68°F)	Reset voltage (at 20°C 68°F)	Nominal operating current (at 20°C 68°F)		Coil resistance [±10%] (at 20°C 68°F)		Nominal operating power		Max. allowable voltage (at 20°C 68°F)
Ū.			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
1.5V DC	75%V or less of nominal voltage* (Initial)	75%V or less of nominal voltage* (Initial)	93.8mA	93.8mA	16Ω	16Ω	140mW	140mW	150%V of nominal voltage
3V DC			46.7mA	46.7mA	64.3Ω	64.3Ω			
4.5V DC			31mA	31mA	145Ω	145Ω			
5V DC			28.1mA	28.1mA	178Ω	178Ω			
6V DC			23.3mA	23.3mA	257Ω	257Ω			
9V DC			15.5mA	15.5mA	579Ω	579Ω			
12V DC			11.7mA	11.7mA	1,028Ω	1,028Ω			
24V DC			8.3mA	8.3mA	2,880Ω	2,880Ω	200mW	200mW	

*Pulse drive (JIS C 5442-1986)

Characteristics	Item		Specifications		
	Arrangement		2 Form C		
Contact	Initial contact resista	nce, max.	Max. 75 mΩ (By voltage drop 6 V DC 1A)		
	Contact material		AgNi type+Au clad		
	Nominal switching ca	pacity (resistive load)	2 A 30 V DC, 0.5 A 125 V AC		
	Max. switching powe	r (resistive load)	60 W (DC), 62.5 VA (AC)		
	Max. switching voltage	je	220 V DC, 125 V AC		
Dating	Max. switching currer	nt	2 A		
Rating	Min. switching capac	ity (Reference value)*1	10µA 10mV DC		
		Single side stable	140 mW (1.5 to 12 V DC), 200 mW (24 V DC), 300 mW (48 V DC)		
	Nominal operating power	1 coil latching	70 mW (1.5 to 12 V DC), 100 mW (24 V DC)		
	power	2 coil latching	140 mW (1.5 to 12 V DC), 200 mW (24 V DC)		
	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Initial breakdown voltage" section.		
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1 min. (Detection current: 10 mA)		
		Between contact and coil	1,500 Vrms for 1 min. (Detection current: 10 mA)		
		Between contact sets	1,500 Vrms for 1 min. (Detection current: 10 mA)		
Electrical	Surge breakdown	Between open contacts	1,500 V (10×160µs) (FCC Part 68)		
characteristics	voltage (Initial)	Between contacts and coil	2,500 V (2×10µs) (Bellcore)		
	Temperature rise (at 20°C 68°F)		Max. 50°C (By resistive method, nominal voltage applied to the coil; contact carrying current: 2A.)		
	Operate time [Set time] (at 20°C 68°F)		Max. 4 ms [Max. 4 ms] (Nominal voltage applied to the coil, excluding contact bounce time.)		
	Release time [Reset time] (at 20°C 68°F)		Max. 4 ms [Max. 4 ms] (Nominal voltage applied to the coil, excluding contact bounce tin (without diode)		
	Charle registeres	Functional	Min. 750 m/s ² (Half-wave pulse of sine wave: 6 ms; detection time: 10µs.)		
Mechanical	Shock resistance	Destructive	Min. 1,000 m/s ² (Half-wave pulse of sine wave: 6 ms.)		
characteristics		Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: 10µs.)		
	Vibration resistance	Destructive	10 to 55 Hz at double amplitude of 5 mm		
	Mechanical		Min. 10 ⁸ (at 180 cpm)		
Expected life	Electrical		Min. 10 ⁵ (2 A 30 V DC resistive), Min. 2×10 ⁵ (1 A 30 V DC resistive), Min. 10 ⁵ (0.5 A 125 V AC resistive) (at 20 cpm)		
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: -40°C to +85°C -40°F to +185°F, Max40°C to +70°C (2A) Max40°F to +158°F (2A); Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)		
	Max. operating speed	d (at rated load)	20 cpm		
Unit weight			Approx. 2 g .071 oz		

Notes: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (SX relays are available for low level load switching [10V DC, 10mA max.level]) *2 Refer to 6. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT.

TQ **REFERENCE DATA**

1. Maximum switching capacity

4.-(1) Electrical life (2 A 30 V DC resistive load) Tested sample: TQ2SA-12V, 6 pcs. Operating speed: 20 cpm Change of pick-up and drop-out voltage (mounting by IRS method)

2. Life curve

3. Mechanical life (mounting by IRS method) Tested sample: TQ2SA-12V, 10 pcs.

6. Operate/release time Tested sample: TQ2SA-12V, 6 pcs.

8.-(2) High-frequency characteristics (Insertion loss)

Change of contact resistance (mounting by IRS method)

7. Ambient temperature characteristics Tested sample: TQ2SA-12V, 5 pcs.

5. Coil temperature rise Tested sample: TQ2SA-12V, 6 pcs. Point measured: Inside the coil Ambient temperature: 25°C 77°F

8.-(1) High-frequency characteristics (Isolation)

All Rights Reserved © COPYRIGHT Matsushita Electric Works, Ltd.

Gm 80

Change of contact resistance

(mounting by IRS method)

9. Malfunctional shock (single side stable) Tested sample: TQ2SA-12V, 6 pcs

Tested sample: TQ2SA-12V, 5 pcs. ~ 10 Rate of change, Pick-up voltage 0 닏닏 ON 1(% 10 Rate of change, Drop-out voltage 0 귀귀 OFF -10 ō .039.079.118.157.197.236 Inter-relay distance ℓ , mm inch

10.-(1) Influence of adjacent mounting

10.-(2) Influence of adjacent mounting Tested sample: TQ2SA-12V, 6 pcs.

11. Pulse dialing test (35 mA 48 V DC wire spring relay load) Tested sample: TQ2SA-12V, 6 pcs. Circuit

Change of pick-up and drop-out voltage (mounting by IRS method)

Change of contact resistance (mounting by IRS method)

DIMENSIONS (Unit: mm inch)

1. Standard PC board terminal and Self-clinching terminal 1) 2 Form C

External dimensions Standard PC board terminal

Self-clinching terminal

General tolerance: ±0.3 ±.012

Schematic (Bottom view) Single side stable 1-coil latching 5

2.54

(Deenergized condition)

đ ò / Direction indication (Reset condition)

Tolerance: ±0.1 ±.004

(Reset condition)

2.54 7.62

TQ

2. Surface-mount terminal

1	and and the second								
Туре	External dimensi	ions (General	tolerance: ±0.3 ±.012)	Suggested mounting pad (Top view) (Tolerance: \pm 0.1 \pm .004)					
SA type		5.6 .220 .220 .008 .20	4.9 .193 .193 .193 .193 .0100 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010	$\begin{array}{c} .039 \\ 2.94 \\ 116 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$					
SL type	2.54 	Max.7.5 .295	4.9 .193 .193 .193 .193 .193 .193 .010 .010 .010 .193 .010 .11540.5 .453±.020	$\begin{array}{c} .039 \\ 2.94 \\ .116 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\$					
SS type		Max.7.5 0.5 .020	4.9 1.93	$\begin{array}{c} 0.39 \\ 1.84 \\ 1.072 \\ 1.072 \\ 1.072 \\ 1.11 \\ 1.072 \\ 1.$					
Schemati	Schematic (Top view)								
Single si		tching	2-coil latching						
- 10 - 10 - 1 Direction (Deenergized	indication Direction in		lo g a 7 6 t a g a g a g a g a g Direction indication (Reset condition)						

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple

factor should be less than 5%. However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 10 ms to set/reset the latching type relay.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. External magnetic field

Since T series relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Packing style

1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

2) Tape and reel packing (surface-mount terminal type)

- (1) Tape dimensions
- (i) SA type

(ii) SL, SS type

(2) Dimensions of plastic reel

Note: Dimensions of items produced after December 2006 have changed as shown below. $100^{\pm 1}$ dia. $3.937^{\pm 039}$ dia. $\rightarrow 80^{\pm 1}$ dia. $3.150^{\pm 039}$ dia.

5. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.

Chucking pressure in the direction A: 9.8 N {1 kgf} or less

Chucking pressure in the direction B: 9.8 N {1 kgf} or less

Chucking pressure in the direction C: 9.8 N {1 kgf} or less

Please chuck the portion. Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

6. M.B.B. contact relays

A small OFF time may be generated by the contact bounce during contact switching. Check the actual circuit carefully.

If the relay is dropped accidentally, check the appearance and characteristics including M.B.B. time before use.

Measuring condition of M.B.B. time

For Cautions for Use, see Relay Technical Information.

7. Others

mm inch

1) If in error the relay has been dropped, the appearance and characteristics should be checked before use without fail.

2) The cycle lifetime is defined under the standard test condition specified in the JIS* C 5442-1986 standard (temperature 15° C to 35° C 59°F to 95° F, humidity 25% to 85%). Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions, and other factors.