Panasonic ideas for life

RoHS Directive compatibility information http://www.mew.co.jp/ac/e/environment/

2. Nominal operating power:

High sensitivity of 140 mW (2 Form C single side stable type)
By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 140 mW (minimum operating power of 79 mW) has been achieved (4 Form C single side stable type is 280 mW).
3. Suitable for SMD automatic insertion (SA type)
With a height of 5.6 mm .220 inch, the relays meet JIS C 0806 specifications.
4. High density mounting possible High-efficiency magnetic circuits ensure low magnetic flux leakage. Because characteristics are little changed by proximity mounting, high-density mounting is possible.
5. The use of gold-clad twin crossbar contacts ensures high contact reliability.
6. DIL terminal array enables use of IC sockets

7. Low thermal electromotive force

As well as low power consumption of 140
mW , use of a structure with separate coil and contact sections has reduced thermal electromotive force to the low level of approximately $5 \mu \mathrm{~V}$.

Surface mount types achieve approximately $2 \mu \mathrm{~V}$.
8. Latching types also available
9. Self-clinching terminal also available
10. A range of surface-mount types is also available.
SA: Low-profile surface-mount terminal type
SL: High connection reliability surfacemount terminal type
SS: Space saving surface- mount terminal type
11. M.B.B. contact types available

TYPICAL APPLICATIONS

1. Communications
2. Measurement equipment
3. OA equipment
4. Industrial machines

FEATURES

1. Flat compact size
$14.0(\mathrm{~L}) \times 9.0(\mathrm{~W}) \times 5.0(\mathrm{H}) .551(\mathrm{~L}) \times$ $.354(\mathrm{~W}) \times .197(\mathrm{H})$

LOW PROFILE
 2 FORM C \& 4 FORM C RELAY

ORDERING INFORMATION

Contact arrangement
2: 2 Form C
4: 4 Form C
Terminal shape
Nil: Standard PC board terminal
H: Self-clinching terminal
SA: SA type
SL: SL type
SS: SS type

Operating function

Nil: Single side stable
L: 1 coil latching
L2: 2 coil latching
MBB function
Nil: Standard (B.B.M.) type
2M: 2M.B.B. type
Coil voltage (DC)
1.5 (SMD only), 3, 4.5, 5, 6, 9, 12, 24, 48V

Packing style

Nil: Tube packing
X: Tape and reel (picked from 1/2/3/4/5-pin side)
Z: Tape and reel packing (picked from the 6/7/8/9/10-pin side)
Notes: 1. *48 V coil type: Single side stable only
2. In case of 5 V transistor drive circuit, it is recommended to use 4.5 V type relay.

TQ

I. Standard PC board terminal and self-clinching terminal

TYPES

1. Standard (B.B.M.) type

1) Standard PC board terminal

Contact arrangement	Nominal coil	Single side stable	1 coil latching	2 coil latching
	voltage	Part No.	Part No.	Part No.
2 Form C	3V DC	TQ2-3V	TQ2-L-3V	TQ2-L2-3V
	4.5 V DC	TQ2-4.5V	TQ2-L-4.5V	TQ2-L2-4.5V
	5V DC	TQ2-5V	TQ2-L-5V	TQ2-L2-5V
	6V DC	TQ2-6V	TQ2-L-6V	TQ2-L2-6V
	9 V DC	TQ2-9V	TQ2-L-9V	TQ2-L2-9V
	12 V DC	TQ2-12V	TQ2-L-12V	TQ2-L2-12V
	24V DC	TQ2-24V	TQ2-L-24V	TQ2-L2-24V
	48 V DC	TQ2-48V	-	-
4 Form C	3V DC	TQ4-3V	TQ4-L-3V	TQ4-L2-3V
	4.5 V DC	TQ4-4.5V	TQ4-L-4.5V	TQ4-L2-4.5V
	5V DC	TQ4-5V	TQ4-L-5V	TQ4-L2-5V
	6V DC	TQ4-6V	TQ4-L-6V	TQ4-L2-6V
	9V DC	TQ4-9V	TQ4-L-9V	TQ4-L2-9V
	12 V DC	TQ4-12V	TQ4-L-12V	TQ4-L2-12V
	24V DC	TQ4-24V	TQ4-L-24V	TQ4-L2-24V
	48V DC	TQ4-48V	-	-

Standard packing (2 Form C): Tube: 50 pcs.; Case: 1,000 pcs.
Standard packing (4 Form C): Tube: 25 pcs.; Case: 500 pcs.
2) Self-clinching terminal

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching
		Part No.	Part No.	Part No.
2 Form C	3V DC	TQ2H-3V	TQ2H-L-3V	TQ2H-L2-1.5V
	4.5 V DC	TQ2H-4.5V	TQ2H-L-4.5V	TQ2H-L2-3V
	5V DC	TQ2H-5V	TQ2H-L-5V	TQ2H-L2-4.5V
	6V DC	TQ2H-6V	TQ2H-L-6V	TQ2H-L2-6V
	9V DC	TQ2H-9V	TQ2H-L-9V	TQ2H-L2-9V
	12 V DC	TQ2H-12V	TQ2H-L-12V	TQ2H-L2-12V
	24 V DC	TQ2H-24V	TQ2H-L-24V	TQ2H-L2-24V
	48 V DC	TQ2H-48V	-	-
4 Form C	3V DC	TQ4H-3V	TQ4H-L-3V	TQ4H-L2-3V
	4.5 V DC	TQ4H-4.5V	TQ4H-L-4.5V	TQ4H-L2-4.5V
	5 V DC	TQ4H-5V	TQ4H-L-5V	TQ4H-L2-5V
	6V DC	TQ4H-6V	TQ4H-L-6V	TQ4H-L2-6V
	9V DC	TQ4H-9V	TQ4H-L-9V	TQ4H-L2-9V
	12 V DC	TQ4H-12V	TQ4H-L-12V	TQ4H-L2-12V
	24V DC	TQ4H-24V	TQ4H-L-24V	TQ4H-L2-24V
	48 V DC	TQ4H-48V	-	-

Note: Types ("-3" to the end of part No.) designed to withstand strong vibration caused, for example, by the use of terminal cutters, can also be ordered. However, please contact us if you need parts for use in low level load.

2. M.B.B. type

1) Standard PC board terminal

Contact arrangement	Nominal coil voltage	Single side stable
		Part No.
2 Form C	3V DC	TQ2-2M-3V
	4.5V DC	TQ2-2M-4.5V
	5V DC	TQ2-2M-5V
	6V DC	TQ2-2M-6V
	9V DC	TQ2-2M-9V
	12 V DC	TQ2-2M-12V
	24V DC	TQ2-2M-24V

[^0]
2) Self-clinching terminal

Contact arrangement	Nominal coil voltage	Single side stable
		Part No.
2 Form C	3V DC	TQ2H-2M-3V
	4.5 V DC	TQ2H-2M-4.5V
	5V DC	TQ2H-2M-5V
	6V DC	TQ2H-2M-6V
	9V DC	TQ2H-2M-9V
	12V DC	TQ2H-2M-12V
	24 V DC	TQ2H-2M-24V

Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.
Notes: 1. Latching types are available by request. Please consult us for details.
2. UL/CSA approved (UL file No.:E 43149, CSA file No.: LR26550)
3. Types ("-1" to the end of part No.) designed to withstand strong vibration caused, for example, by the use of terminal cutters, can also be ordered. However, please contact us if you need parts for use in low level load and low thermal power.

RATING

1. Coil data

[Standard (B.B.M.) type]

1) Single side stable (2 Form C)

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	46.7 mA	64.3Ω	140mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			31.1 mA	144.6Ω		
5 V DC			28.1 mA	178Ω		
6V DC			23.3 mA	257Ω		
9V DC			15.5 mA	579Ω		
12 V DC			11.7 mA	1,028		
24V DC			8.3 mA	2,880 Ω	200 mW	
48V DC			6.25 mA	7,680	300 mW	$120 \% \mathrm{~V}$ of nominal voltage

2) 1 coil latching (2 Form C)

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	33.3 mA	90Ω	100 mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			22.2 mA	202.5Ω		
5V DC			20 mA	250Ω		
6V DC			16.7 mA	360Ω		
9V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1,440 Ω		
24V DC			6.3 mA	$3,840 \Omega$	150mW	

3) 2 coil latching (2 Form C)

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operatingcurrent$[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$		Nominal operating power		Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil		
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	66.7 mA	66.7 mA	45Ω	45Ω	200mW	200 mW	$150 \% \mathrm{~V}$ of nominal voltage	
4.5 V DC			44.4 mA	44.4 mA	101.2Ω	101.2Ω				
5V DC			40 mA	40 mA	125Ω	125Ω				
6V DC			33.3 mA	33.3 mA	180Ω	180Ω				
9V DC			22.2 mA	22.2 mA	405Ω	405Ω				
12V DC			16.7 mA	16.7 mA	720Ω	720Ω				
24V DC			12.5 mA	12.5 mA	1,920	1,920	300 mW	300mW	$120 \% \mathrm{~V}$ of nominal voltage	
4) Single side stable (4 Form C)										
Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$		Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Nominal operating power		Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	93.8 mA		32Ω		280mW		$150 \% \mathrm{~V}$ of nominal voltage	
4.5 V DC			62.2 mA		72.3Ω					
5V DC			56.2 mA		89Ω					
6V DC			46.5 mA		129Ω					
9V DC			31.1 mA		289Ω					
12 V D			23.3 mA		514Ω					
24V DC			11.7 mA		2,056 Ω					
48 V DC			8.3 mA		$5,760 \Omega$		400 mW		$120 \% \mathrm{~V}$ of nominal voltage	

5) 1 coil latching (4 Form C)

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operatingcurrent$[\pm 10 \%]\left(\right.$ at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Nominal operating power		Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	66.6 mA		45Ω		200mW		
4.5 V DC			44.4 mA		101.2Ω				
5V DC			40 mA		125Ω				
6 V DC			33.3 mA		180Ω				$150 \% \mathrm{~V}$ of
9V DC			22.2 mA		405Ω				
12 V DC			16.7 mA		720Ω				
24V DC			8.3 mA		2,880 Ω				
6) 2 coil latching (4 Form C)									
Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \quad \begin{array}{c} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{array} \\ \hline \end{gathered}$		Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Nominal operating power		Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	133 mA	133 mA	22.5Ω	22.5Ω	400mW	400mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			88.9 mA	88.9 mA	50.6Ω	50.6Ω			
5 V DC			80 mA	80 mA	62.5Ω	62.5Ω			
6V DC			66.6 mA	66.6 mA	90Ω	90Ω			
9V DC			44.4 mA	44.4 mA	202.5Ω	202.5Ω			
12V DC			33.3 mA	33.3 mA	360Ω	360Ω			
24V DC			16.7 mA	16.7 mA	1,440 2	1,440 Ω			

*Pulse drive (JIS C 5442-1986)

[M.B.B. type]						
Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	66.7 mA	45Ω	200mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			44.4 mA	101Ω		
5V DC			40 mA	125Ω		
6V DC			33.3 mA	180Ω		
9 V DC			22.2 mA	405Ω		
12 V DC			16.7 mA	720Ω		
24 V DC			8.3 mA	2,880 ${ }^{\text {a }}$		

2. Specifications

Characteristics	Item		Specifications	
Contact	Arrangement		2 Form C, 2 Form D (M.B.B.)	4 Form C
	Initial contact resistance, max.		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	
	Contact material		Ag+Au clad	
Rating	Nominal switching capacity (resistive load)		$1 \mathrm{~A} 30 \mathrm{~V} \mathrm{DC}, 0.5 \mathrm{~A} 125 \mathrm{~V} \mathrm{AC}^{* 1}$	
	Max. switching power (resistive load)		30 W (DC), $62.5 \mathrm{~V} \mathrm{~A} \mathrm{(AC)**}$	
	Max. switching voltage		$110 \mathrm{~V} \mathrm{DC}, 125 \mathrm{~V} \mathrm{AC}{ }^{\text {* }}$	
	Max. switching current		1 A	
	Min. switching capacity (Reference value)*2		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC	
	Nominal operating power	Single side stable	Standard (B.B.M) type: 140 mW (3 to 12 V DC), 200 mW (24 V DC), 300 mW (48 V DC) M.B.B. type: 200 mW	280 mW (3 to 24 V DC), 400 mW (48 V DC)
		1 coil latching	100 mW (3 to 12 V DC), 150 mW (24V DC)	200 mW
		2 coil latching	200 mW (3 to 12 V DC), 300 mW (24 V DC)	400 mW
Electrical characteristics	Insulation resistance (Initial)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC)Measurement at same location as "Initial breakdown voltage" section.	
	Breakdown voltage (Initial)	Between open contacts	Standard (B.B.M) type: 750 Vrms for 1 min . (Detection current: 10 mA), M.B.B. type: 300 Vrms for 1 min . (Detection current: 10 mA)	
		Between contact and coil	1,000 Vrms for 1 min . (Detection current: 10 mA)	
		Between contact sets	1,000 Vrms for 1 min . (Detection current: 10 mA)	
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal voltage applied to the coil; contact carrying current: 1 A .)	
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 3 ms [Max. 3 ms] (Nominal voltage applied to the coil, excluding contact bounce time.)	
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 3 ms [Max. 3 ms] (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode)	
Mechanical characteristics	Shock resistance	Functional	Min. $490 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)	
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3 mm (Detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	10 to 55 Hz at double amplitude of 5 mm	
	Mechanical (at 180 cpm)		Standard (B.B.M) type: Min. 10^{8}, M.B.B. type: Min. 10^{7}	
Expected life	Electrical (at 20 cpm)		Standard (B.B.M) type: Min. 2×10^{5} (1 A 30 V DC resistive), Min. 10^{5} (0.5 A 125 V AC resistive) M.B.B. type: Min. 10^{5} (1 A 30 V DC resistive)	
Conditions	Conditions for operation, transport and storage ${ }^{\star 3}$		Standard (B.B.M) type: Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature) M.B.B. type: Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+122^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)	
	Max. operating speed (at rated load)		20 cpm	
Unit weight			Approx. 1.5 g .053 oz	Approx. 3 g .106 oz .

Notes: *1 AC is standard (B.B.M) type only.
*2 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (SX relays are available for low level load switching [10V DC. 10 mA max. level])
*3 Refer to 6. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT.

REFERENCE DATA

1. Maximum switching capacity

2. Life curve

3. Mechanical life

Tested sample:TQ2-12V, 10 pcs .
4.-(1) Electrical life (DC load)

Tested sample: TQ2-12V, 6 pcs.
Condition: 1 A 30 V DC resistive load, 20 cpm Change of pick-up and drop-out voltage

7.-(1) High-frequency characteristics (Isolation)

9.-(1) Influence of adjacent mounting

Change of contact resistance

5. Coil temperature rise (2C)

Tested sample: TQ2-12V
Measured portion: Inside the coil
Ambient temperature: $30^{\circ} \mathrm{C} 86^{\circ} \mathrm{F}$

7.-(2) High-frequency characteristics (Insertion loss)

4.-(2) Electrical life (AC load)

Tested sample:TQ2-12V, 6 pcs.
Condition: 0.5 A 125 V AC resistive load, 20 cpm
Change of pick-up and drop-out voltage

6. Ambient temperature characteristics Tested sample: TQ2-12V, 5 pcs.

8. Malfunctional shock (single side stable) Tested sample: TQ2-12V, 6 pcs.

10. Contact reliability

(1 mA 5 V DC resistive load)
Tested sample:TQ2-12V
Condition: Detection level 10 W

Circuit

Change of pick-up and drop-out voltage

Change of contact resistance

12. 0.1 A 53 V DC resistive load test Change of pick-up and drop-out voltage

Change of contact resistance

13. Distribution of M.B.B. time

Tested sample: TQ2-2M-5V, 85 pcs.

II. Surface-mount terminal

TYPES

1) Tube packing

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching
		Part No.	Part No.	Part No.
2c	1.5 V DC	TQ2S \square-1.5V	TQ2S \square-L-1.5V	TQ2S \square-L2-1.5V
	3V DC	TQ2S \square-3V	TQ2S $\square-\mathrm{L}-3 \mathrm{~V}$	TQ2S \square-L2-3V
	4.5 V DC	TQ2S \square-4.5V	TQ2S \square-L-4.5V	TQ2S \square-L2-4.5V
	5V DC	TQ2S \square-5V	TQ2S $\square-\mathrm{L}-5 \mathrm{~V}$	TQ2S \square-L2-5V
	6V DC	TQ2S \square-6V	TQ2S \square-L-6V	TQ2S \square-L2-6V
	9V DC	TQ2S \square-9V	TQ2S $\square-L-9 \mathrm{~V}$	TQ2S \square-L2-9V
	12 V DC	TQ2S \square-12V	TQ2S \square-L-12V	TQ2S \square-L2-12V
	24V DC	TQ2S \square-24V	TQ2S \square-L-24V	TQ2S \square-L2-24V
	48 V DC	TQ2S \square-48V	-	-

\square : For each surface-mounted terminal identification, input the following letter. SA type: A, SL type: L , SS type: \underline{S}
Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.

2) Tape and reel packing

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching
		Part No.	Part No.	Part No.
2 Form C	1.5 V DC	TQ2S \square-1.5V-Z	TQ2S \square-L-1.5V-Z	TQ2S \square-L2-1.5V-Z
	3 V DC	TQ2S \square-3V-Z	TQ2S \square-L-3V-Z	TQ2S \square-L2-3V-Z
	4.5 V DC	TQ2S \square-4.5V-Z	TQ2S \square-L-4.5V-Z	TQ2S \square-L2-4.5V-Z
	5V DC	TQ2S \square-5V-Z	TQ2S \square-L-5V-Z	TQ2S \square-L2-5V-Z
	6V DC	TQ2S \square-6V-Z	TQ2S \square-L-6V-Z	TQ2S \square-L2-6V-Z
	9 V DC	TQ2S \square-9V-Z	TQ2S \square-L-9V-Z	TQ2S \square-L2-9V-Z
	12 V DC	TQ2S \square-12V-Z	TQ2S \square-L-12V-Z	TQ2S \square-L2-12V-Z
	24V DC	TQ2S \square-24V-Z	TQ2S \square-L-24V-Z	TQ2S \square-L2-24V-Z
	48 V DC	TQ2S \square-48V-Z	-	-

\square : For each surface-mounted terminal identification, input the following letter. SA type: \underline{A}, SL type: \underline{L}, SS type: \underline{S}
Standard packing: Tape and reel: 500 pcs.; Case: 1,000 pcs.
Note: Tape and reel packing symbol " $-Z$ " is not marked on the relay. " X " type tape and reel packing (picked from $1 / 2 / 3 / 4-$ pin side) is also available.

RATING

1. Coil data

1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	93.8 mA	16Ω	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			46.7 mA	64.3Ω		
4.5 V DC			31 mA	145Ω		
5V DC			28.1 mA	178Ω		
6 V DC			23.3 mA	257Ω		
9V DC			15.5 mA	579Ω		
12 V DC			11.7 mA	1,028 ${ }^{\text {a }}$		
24V DC			8.3 mA	2,880 2	200mW	
48V DC			6.3 mA	7,680 Ω	300 mW	$120 \% \mathrm{~V}$ of nominal voltage

2) 1 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	46.9 mA	32Ω	70mW	$150 \% \mathrm{~V}$ of nominal voltage
3 V DC			23.3 mA	128.6Ω		
4.5 V DC			15.6 mA	289.3Ω		
5V DC			14 mA	357Ω		
6V DC			11.7 mA	514Ω		
9 V DC			7.8 mA	1,157 Ω		
12 V DC			5.8 mA	2,057 Ω		
24 V DC			4.2 mA	5,760	100mW	

3) 2 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nomina (at 20	operating ent $68^{\circ} \mathrm{F}$)	$\begin{aligned} & \text { Coil re } \\ & {[\pm 10 \%] \text { (at }} \end{aligned}$	stance $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nomina p	perating er	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	93.8 mA	93.8 mA	16Ω	16Ω	140 mW	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			46.7 mA	46.7 mA	64.3Ω	64.3Ω			
4.5 V DC			31 mA	31 mA	145Ω	145Ω			
5 V DC			28.1 mA	28.1 mA	178Ω	178Ω			
6V DC			23.3 mA	23.3 mA	257Ω	257Ω			
9V DC			15.5 mA	15.5 mA	579Ω	579Ω			
12 V DC			11.7 mA	11.7 mA	1,028 ${ }^{\text {a }}$	1,028			
24 V DC			8.3 mA	8.3 mA	2,880 ${ }^{\text {a }}$	2,880 2	200mW	200 mW	

*Pulse drive (JIS C 5442-1986)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C
	Initial contact resistance, max.		Max. $75 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		AgNi type+Au clad
Rating	Nominal switching capacity (resistive load)		2 A 30 V DC, 0.5 A 125 V AC
	Max. switching power (resistive load)		60 W (DC), 62.5 VA (AC)
	Max. switching voltage		220 V DC, 125 V AC
	Max. switching current		2 A
	Min. switching capacity (Reference value)*1		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC
	Nominal operating power	Single side stable	140 mW (1.5 to 12 V DC), 200 mW (24 V DC), 300 mW (48 V DC)
		1 coil latching	70 mW (1.5 to 12 V DC), 100 mW (24 V DC)
		2 coil latching	140 mW (1.5 to 12 V DC), 200 mW (24 V DC)
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	$1,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
		Between contact sets	1,500 Vrms for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
		Between contacts and coil	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s})$ (Bellcore)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal voltage applied to the coil; contact carrying current: 2A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: 10رs.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 10^{8} (at 180 cpm)
	Electrical		Min. 10^{5} (2 A 30 V DC resistive), Min. 2×10^{5} (1 A 30 V DC resistive), Min. 10^{5} (0.5 A 125 V AC resistive) (at 20 cpm)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$, Max. $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(2 \mathrm{~A}) \mathrm{Max} . ~-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}(2 \mathrm{~A})$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 2 g .071 oz

Notes: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (SX relays are available for low level load switching [10V DC, 10 mA max. levell)
*2 Refer to 6. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT.

REFERENCE DATA

1. Maximum switching capacity

4.-(1) Electrical life (2 A 30 V DC resistive load)

Tested sample: TQ2SA-12V, 6 pcs.
Operating speed: 20 cpm
Change of pick-up and drop-out voltage (mounting by IRS method)

2. Life curve

3. Mechanical life (mounting by IRS method) Tested sample:TQ2SA-12V, 10 pcs.

4.-(2) Electrical life (0.5 A 125 V AC resistive load) Tested sample:TQ2SA-12V, 6 pcs
Operating speed: 20 cpm
Change of pick-up and drop-out voltage (mounting by IRS method)

5. Coil temperature rise

Tested sample:TQ2SA-12V, 6 pcs.
Point measured: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

8.-(1) High-frequency characteristics (Isolation)

6. Operate/release time

 Tested sample:TQ2SA-12V, 6 pcs.
8.-(2) High-frequency characteristics (Insertion loss)

9. Malfunctional shock (single side stable) Tested sample:TQ2SA-12V, 6 pcs

10.-(1) Influence of adjacent mounting Tested sample: TQ2SA-12V, 5 pcs.

10.-(2) Influence of adjacent mounting Tested sample: TQ2SA-12V, 6 pcs.

11. Pulse dialing test
(35 mA 48 V DC wire spring relay load) Tested sample: TQ2SA-12V, 6 pcs. Circuit

Change of pick-up and drop-out voltage (mounting by IRS method)

Change of contact resistance (mounting by IRS method)

DIMENSIONS (Unit: mm inch)

1. Standard PC board terminal and Self-clinching terminal
 1) 2 Form C

External dimensions
Standard PC board terminal

Self-clinching terminal

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)
Single side stable

(Deenergized condition)

1-coil latching

(Reset condition)

2-coil latching

2) 4 Form C

External dimensions
Standard PC board terminal

PC board pattern (Bottom view)

General tolerance: $\pm 0.3 \pm .012$

Tolerance: $\pm 0.1 \pm .004$

2. Surface-mount terminal

Type	External dimensions (General tolerance: $\pm 0.3 \pm .012$)	Suggested mounting pad (Top view) (Tolerance: $\pm 0.1 \pm .004$)
SA type		
SL type		
SS type		

Schematic (Top view)

(Deenergized condition)

1-coil latching

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 10 ms to set/reset the latching type relay.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. External magnetic field

Since T series relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Packing style

1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

2) Tape and reel packing (surface-mount terminal type)
(1) Tape dimensions
(i) SA type
mm inch

(ii) SL, SS type

(2) Dimensions of plastic reel

Note: Dimensions of items produced after December 2006 have changed as shown below.
$100^{ \pm 1}$ dia. $3.937^{ \pm 039}$ dia. $\rightarrow 80^{ \pm 1}$ dia. $3.150^{ \pm 039}$ dia.

5. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction B: $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction C : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less

Please chuck the \square portion. Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

6. M.B.B. contact relays

A small OFF time may be generated by the contact bounce during contact switching. Check the actual circuit carefully.
If the relay is dropped accidentally, check the appearance and characteristics including M.B.B. time before use.

Measuring condition of M.B.B. time

7. Others

1) If in error the relay has been dropped, the appearance and characteristics should be checked before use without fail.
2) The cycle lifetime is defined under the standard test condition specified in the JIS* C 5442-1986 standard (temperature $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C} 59^{\circ} \mathrm{F}$ to $95^{\circ} \mathrm{F}$, humidity 25% to 85%). Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions, and other factors.

For Cautions for Use, see Relay Technical Information.

[^0]: Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.

